Total No. of Questions: 6

Total No. of Printed Pages:3

Enrollment No.....

DI-Ca	Faculty o	of Engineering
E CON	End Sem (Odd) Examination Dec-2017	
UNIVERSITY	CS3CO01 Data Structure	
Knowledge is Power	Programme: B.Tech.	Branch/Specialisation: CS
Duration: 3 Hrs.		Maximum Marks: 60

Note: All questions are compulsory. Internal choices, if any, are indicated. Answers of Q.1 (MCQs) should be written in full instead of only a, b, c or d.

Q.1	i.	There are 4 different algorithms A1, A2, A3, A4 to solve a given problem with the order $log(n)$, $log(log(n))$, $nlog(n)$, $n/log(n)$ respectively. Which is the best algorithm?	1
		(a) A1 (b) A4 (c) A2 (d) A3	
	ii.	What are the advantages of arrays?	1
		(a) Easier to store elements of same data type	
		(b) Used to implement other data structures like stack and queue	
		(c) Convenient way to represent matrices as a 2D array	
		(d) All of these	
	iii.	Which of the following is useful in traversing a given graph by	1
		breadth first search?	
		(a) Stacks (b) Set (c) List (d) Queue	
	iv.	The maximum degree of any vertex in a simple graph with n	1
		vertices is	
		(a) n (b) $n-1$ (c) $n+1$ (d) $2n-1$	
	v.	Why to prefer splay trees?	1
		(a) Easier to program	
		(b) Space efficiency	
		(c) Easier to program and faster access to recently accessed items	
		(d) Quick searching	
	vi.	A balance factor in AVL tree is used to check	1
		(a) What rotation to make.	
		(b) If all child nodes are at same level.	
		(c) When the last rotation occurred.	
		(d) If the tree is unbalanced.	

	vii.	The inorder traversal of tree will yield a sorted listing of elements of tree in	
		(a) Binary Trees (b) Binary Search Trees	
		(c) Heaps (d) Binary Heaps	
	viii.	Which of the following is not a stable sorting algorithm:	1
		(a) Insertion sort (b) Selection sort	
		(c) Bubble sort (d) Merge sort	
	ix.	If several elements are competing for same bucket in the hash	1
		table, what is it called?	
		(a) Diffusion (b) Replication (c) Confusion (d) None of these	
	x. A B-tree of order 4 is built from scratch by 10 successiv		1
		insertions. What is the maximum number of node splitting	
		operations that may take place?	
		(a) 3 (b) 4 (c) 5 (d) 6	
Q.2		Attempt any two:	
	i.	Briefly describe different Asymptotic Notations.	5
ii. Write algorithm for PUSH and POP operations on stack.		Write algorithm for PUSH and POP operations on stack.	5
	iii.	With an example explain how to perform addition of two	5
		polynomials using linked list.	
0.2	;	Write the verieus wave for the representation of graph	2
Q.3	1. write the various ways for the representation of graph.		2
	11. ;;;	Create a Binary Tree, when the following, traversal of it are given	5
	111.	Create a binary free when the following traversal of it are given	5
		as Postorder Traversal - IEDBEHGCA	
		Inorder Traversal $-BEIDAECHG$	
OR	iv	Explain Breadth First Search Traversing in a graph Also write	5
OR	1	its algorithm	J
Q.4		Attempt any two:	
	i.	Discuss and compare Binary Heap and Leftist Heap.	5
	ii.	Construct an AVL Tree by inserting numbers from 1 to 8.	5
	iii.	Define Balanced Tree? Write the importance of rotations to	5
		balance a Binary Tree.	

Q.5		Attempt any two:	
	i.	Explain Insertion sort with the help of an example. Also write	5
		down its algorithm.	
	ii.	What is heap? Show the procedure to create a Max Heap with an	5
		example.	
	iii.	Write a short note on k-way merge sort.	5
Q.6		Attempt any two:	
	i.	Explain Binary Search Method. Also write its algorithm.	5
	ii.	What is Hashing? Write its problem and solutions.	5
	iii.	Discuss the applications of searching and indexing in computer	5
		field.	

CS3CO01 Data Structure Marking Scheme

Q.1	i.	(c) A2	1
	ii.	(d) All of these	1
	iii.	(d) Queue	1
	iv.	(b) n-1	1
	v.	(c) Easier to program and faster access to recently accessed items	1
	vi.	(d) If the tree is unbalanced.	1
	vii.	(b) Binary Search Trees	1
	viii.	(b) Selection sort	1
	ix.	(d) None of these	1
	х.	(c) 5	1
Q.2		Attempt any two:	
	i.	Type of Notation 0.5 marks	5
		For description with graph.	
	ii.	PUSH algorithm - 2.5 marks	5
		POP algorithm – 2.5 marks	
	iii.	Polynomials representation – 1 mark	5
		Procedure for addition – 2 marks	
		Example – 2 marks	
Q.3	i.	Minimum two representation of graph. 1 mark each	2
	ii.	Definition 2 marks example 1 mark	3
	iii.	Create a Binary Tree	5
OR	iv.	Explanation - 2 marks	5
		Example – 1 marks	
		Algorithma – 2 marks	
Q.4		Attempt any two:	
	i.	Definition of Binary Heap 1 mark	5
		Definition of Leftist Heap 1 mark.	
		Difference 3 marks (minimum 3 points)	
	ii.	AVL Tree by inserting numbers from 1 to 8	5
	iii.	Definition 2 marks	5
		Importance of rotations 3 marks	

Q.5		Attempt any two:	
	i.	Explanation Insertion sort 1 mark	5
		Example with passes -2 marks	
		Algorithm of insertion sort -2 marks	
	ii.	Definition heap with types 3 marks	5
		Procedure to create a Max Heap with an example 2 marks	
	iii.	Explanation 3 marks	5
		Example 2 marks	
Q.6		Attempt any two:	
	i.	Definition Binary Search Method 2 marks	5
		Algorithm of Binary Search 3 marks	
	ii.	Definition Hashing 2 marks	5
		Example 1 mark	
		Problem of hashing 1 mark	
		Solution of hashing 1 mark	
	iii.	Applications of searching (minimum 3 application) 2.5 marks	5
		Applications of indexing (minimum 3 application) 2.5 marks	
